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In laser wakefield accelerators, electron motion is driven by intense forces that depend on the
plasma density. Transverse oscillations in the accelerated electron orbits produce betatron radiation.
The electron motion and the resulting betatron radiation spectrum can therefore be controlled by
shaping the plasma density along the orbit of the electrons. Here, a method based on the use of a
plasma with a longitudinal density variation �density depression or step� is proposed to increase the
transverse oscillation amplitude and the energy of the electrons accelerated in a wakefield cavity.
For fixed laser parameters, by appropriately tailoring the plasma profile, the betatron radiation
emitted by these electrons is significantly increased in both flux and energy. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2918657�

I. INTRODUCTION

Laser-driven, plasma-based accelerators are promising
candidates for compact electron accelerators.1–3 In a laser
wakefield accelerator �LWFA�, an intense laser pulse drives a
large amplitude wave �wakefield� in a plasma with an ultra-
high electric field �10–100 GV /m� suitable for accelerating
electrons to relativistic energies. At ultrahigh intensities, the
laser pulse expels all of the plasma electrons from the region
of the axis, forming a highly nonlinear wake consisting of an
ion cavity �also referred to as the bubble or blowout
regime�.4–6 Electrons from the background plasma can be-
come trapped in this cavity and accelerated to high energies.
Experiments on LWFAs have demonstrated the production of
high quality electron bunches at the 100 MeV �Refs. 7–10�
and 1 GeV �Ref. 11� levels over mm and cm scale plasmas,
respectively. Such high quality electron bunches can subse-
quently generate x rays through a variety of mechanisms,12

including betatron radiation,13–22 Thomson scattering,18 and
synchrotron and free electron laser radiation by passing the
electron bunch through an undulator magnet.23 Since both
the electron bunch and x-ray pulse are ultrashort �fs duration�
and intrinsically synchronized to the drive laser pulse, such
sources are ideal for use in pump-probe experiments for ul-
trafast science.

Betatron radiation13–22 is emitted by an electron bunch
accelerated in a plasma-based accelerator as a result of the
transverse focusing fields of the wake. These focusing fields
induce transverse oscillations �referred to as betatron motion�
in the orbits of the accelerated electrons. The wavelength of
this oscillation is the betatron wavelength ��, which for a
cavitated wake is given by ����2��1/2�p, where � is the
relativistic factor of the accelerated electron and �p

=2�c /�p is the plasma wavelength, with �p= �4�e2n /m�1/2

the plasma frequency, and n the plasma density. Conse-
quently, this betatron motion leads to the emission of syn-
chrotron radiation �referred to as betatron radiation�. For a

small amplitude betatron oscillation, this radiation is emitted
at a frequency ��2�2��, where ��=2�c /�� is the betatron
frequency. For example, a 100 MeV electron ���200� un-
dergoing a small amplitude betatron oscillation in a plasma
of density n=2�1019 cm−3 ��p�7.3 �m and ���150 �m�
will emit betatron radiation at an energy of ���660 eV.
This radiation will be confined to a cone angle of 	�1 /�.
Betatron radiation has been observed from plasma-based ac-
celerators with both electron beam drivers14,20 and laser
drivers.17,21,22

Two important parameters13 that characterize the fea-
tures of betatron radiation are the betatron strength parameter
a� �analogous to the undulator strength parameter in a con-
ventional synchrotron� and the critical frequency �c. In prac-
tical units, these can be written as

a� � 1.3 � 10−10��n�cm−3��1/2r���m� , �1�

��c�keV� � 1.1 � 10−23�2n�cm−3�r���m� , �2�

where r� is the amplitude of the betatron orbit. For a�
1,
e.g., for a small amplitude betatron oscillation, betatron ra-
diation is emitted at the fundamental frequency ��2�2��.
However, for a��1 betatron radiation is emitted within a
broadband spectrum characterized by the critical frequency
�c beyond which the radiation intensity rapidly diminishes.
The radiation is emitted in the direction of the electron ve-
locity within a vertical angle �normal to the plane containing
the betatron orbit� of 	v�rad��1 /� and a horizontal angle
�within the plane of the orbit� of 	h�rad��a� /�. In the typi-
cal parameter regime of current laser-plasma experiments,
a��10 and the betatron radiation consists of a femtosecond
flash of broadband x-ray radiation extending up to 10 keV,
collimated within a few tens of milliradians. As an example,
the parameters �=200, n=2�1019 cm−3, and r�=1 �m give
a��8 and ��c�9 keV.

To increase the photon energy of the betatron radiation,
it is necessary to increase the critical frequency �c via in-
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creasing �, n, and/or r�. One straightforward method for in-
creasing �c is to increase the electron energy �. Although in
principle this can be accomplished by using higher power
lasers in longer plasmas, this approach may not be practical,
since experiments are typically limited by the maximum
available power of the laser system. Furthermore, using a
cavitated wake in an initially longitudinally uniform plasma
is inefficient for the production of betatron radiation for two
reasons. First, the transverse amplitude of the electrons orbits
in the ion cavity is typically of the order of 1 micron,21

whereas the diameter of the ion cavity is of the order of the
laser spot size in the plasma, which can be several microns.
Second, the electrons outrun the wake after the dephasing
length1 and are decelerated, whereas the laser pulse and ion
cavity can propagate over a pump depletion length, which
can be longer than the dephasing length.

In this article we propose methods based on tailoring the
longitudinal profile of the plasma density to shift the spec-
trum of the betatron radiation to higher energies. Two ap-
proaches are investigated. In the first method, a region of
depressed density is introduced in an otherwise initially uni-
form plasma. Accelerated electrons that enter the depression
at the proper phase in their betatron oscillation will increase
their transverse displacement, thus exiting the depression
with a larger betatron amplitude. In addition, an increased
betatron amplitude also implies that the axial electron veloc-
ity is lowered, which increases the dephasing length and the
electron energy. Thus, a density depression can lead to in-
creases in both r� and �, thereby increasing �c. In the second
method, a longitudinal step density profile is used wherein
the density in the latter portion of the plasma is increased.
The increased density decreases the radius of the cavitated
wake �which is proportional to the plasma wavelength�,
which increases the dephasing length and the electron energy
gain.24,25 Thus, a step function density profile can increase
both n and �, thereby increasing �c. Numerical examples
based on test particle orbits will be presented that indicate
that the betatron radiation spectrum can be shifted from the
keV range toward the tens keV range without altering the
drive laser parameters.

The remainder of this paper is organized as follows:
Some of the basic properties of betatron radiation are re-
viewed in Sec. II. Modifications to the electron orbits as a
result of modifying the longitudinal density profile with ei-
ther a depression or a density step are presented in Sec. III.
These results are obtained from numerically studying the
motion of test electrons in analytically specified wakefields
in the cavitated �blow-out� regime. The betatron spectra gen-
erated from the orbits in the modified density profiles are
presented in Sec. IV for both single electrons and for a col-
lection of test particles in an electron bunch. A discussion is
presented in Sec. V.

II. BASIC PROPERTIES OF BETATRON RADIATION

An electron undergoing betatron oscillations in a plasma
focusing channel, such as that produced in a laser wakefield
accelerator, will emit synchrotron radiation. In the absence of
an accelerating field, properties of the betatron radiation have

been calculated in detail.13 Here, we summarize the proper-
ties of betatron radiation from a single electron oscillating in
the focusing fields of a plasma channel in the blowout re-
gime. In the blowout regime, in which all of the plasma
electrons have been expelled from the region near the propa-
gation axis, the transverse force on a highly relativistic elec-
tron is described by an effective radial electric field given by
Er= �kp

2r /2�E0, where kp=�p /c and E0=kpmc2 /e. A highly
relativistic electron will then execute transverse betatron os-
cillations in the �x ,z� plane given by x�t��r� sin�k�ct� with
a transverse velocity vx�ck�r� cos�k�ct�, where k�

=kp / �2�z0�1/2 is the betatron wavenumber in the blow-out
regime, r� is the amplitude of the betatron orbit, �z0= �1
+uz0

2 �1/2, and pz0=mcuz0 is the axial momentum, which is
constant in the absence of an axial accelerating field. Pro-
vided the number of betatron periods N� that the electron
undergoes is large, N�1, radiation is emitted in a series of
harmonics and with frequencies centered about the resonant
frequencies

�N =
2�z0

2 Nck�

�1 + a�
2 /2 + �z0

2 	2�
, �3�

where

a� = �z0k�r� �4�

is the betatron strength parameter, N is the harmonic number
and 	 is the observation angle with respect to the propagation
axis assuming �z0

2 1, 	2
1, and �1+a�
2 /2� /�z0

2 
1. The in-
trinsic frequency width ��N about �N of the radiation emit-
ted along the axis �	=0� is given by ��N /�N= �NN��−1. Ra-
diation with frequencies in ��N about �N are confined to a
cone angle �	 given by �	I

2��1+a�
2 /2� / ��z0

2 NN��.
An important parameter characterizing the properties of

the betatron radiation is the betatron strength parameter, a�.
For a�

2 
1, the emitted radiation will be narrowly peaked
about the fundamental resonant frequency, �1 �N=1�. As a�

approaches unity, emitted radiation will appear at harmonics
of the resonant frequency as well, �N=N�1. When a�1,
high harmonic �N1� radiation is generated and the result-
ing synchrotron radiation spectrum consists of many closely
spaced harmonics. Hence, in the asymptotic limit, i.e., a�

1, the gross spectrum appears broadband, and a continuum
of radiation is generated that extends out to a critical fre-
quency, �c, beyond which the radiation intensity diminishes.
In particular, the asymptotic �a�

2 1� spectrum along the axis
�	=0� is given by13,26

d2I�0�
d��d�

� �6/�2�� fN��z0
2 �2K2/3

2 ��� , �5�

where d2I /d�d� is the energy radiated per unit frequency
�d�� and per unit solid angle �d��, � f =1 /137, K2/3 is a
modified Bessel function with argument �=� /�c, and

�c � 3a��z0
2 ck� = 3cr�k�

2�z0
3 �6�

is the critical frequency �corresponding to a critical harmonic
number of nc=3a�

3 /4�. The function Y���=�2K2/3
2 ��� is maxi-

mum at ��0.42 and decreases rapidly for ��1. From Eq.
�5�, half of dI�0� /d� is radiated at frequencies ��0.77�c
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and half at ��0.77�c. For frequencies �
�c, the radiation
intensity increases as �� /�0�2/3, and for ��c, the radiation
intensity decreases exponentially as exp�−2� /�c�. Further-
more, the average angular spread for the frequency inte-
grated spectrum in the vertical direction �normal to plane of
containing the betatron orbit� is 	v�1 /�z0, whereas in the
horizontal direction �in the plane of containing the betatron
orbit�, 	h�a� /�z0. In particular, in the vertical plane, inte-
grating the radiation spectrum over the vertical angle 	v
yields

d2I�0�
d��d	h

�
2�3

�
� fN��z0

�

�c
�

2�/�c

�

d�K5/3��� . �7�

Equation �7� exhibits a maximum at ��0.14�c with half of
dI /d	h radiated at frequencies ���c /2 and half at �
��c /2.

A highly effective method for shifting the radiation spec-
trum to high photon energies is to increase the critical fre-
quency, �c. In the blow-out regime,

�c = �3/2�cr�kp
2�z0

2 � r�n0�z0
2 . �8�

The critical frequency, and hence the photon energy of the
betatron radiation, can be increased by increasing the beta-
tron orbit amplitude rb, the plasma density n0, and/or the
electron energy �z0.

The above results neglect the effects of an axial acceler-
ating field. With acceleration, the axial electron momentum
pz will increase. Assuming that pz varies slowly over a beta-
tron period, the local betatron wavenumber is k�

�kp / �2��1/2 and the amplitude of the betatron oscillation is
r��r�0��0 /��1/4, i.e., the orbit amplitude decreases as � in-
creases, where r�0 and �0 are the initial values at the channel
entrance.19 Here the approximation �z= �1+ pz

2 /m2c2�1/2��
has been made. As the electron accelerates, the critical fre-
quency is shifted to higher values, �c��7/4 and the betatron
spectrum broadens.

III. ELECTRON MOTION IN A DENSITY
TAILORED WAKEFIELD

In a laser wakefield accelerator, the most straightforward
method for enhancing the electron energy is to use higher
laser powers and longer plasmas. However, this may not al-
ways be practical. Here, we consider two methods for en-
hancing the betatron radiation for fixed laser parameters,
both of which rely on tailoring the plasma density profile
�Fig. 1�. The first is to introduce zero density spatial gaps
between uniform plasma density sections, so as to increase
the betatron orbit of the electrons. The second is to introduce
a higher density region after a lower density region, so as to
increase the electron energy. Both methods should increase
the average critical frequency and thus shift the betatron ra-
diation spectrum to high photon energies.

Here we consider electron motion within an idealized
model of a laser wakefield accelerator in the blow-out
regime.4–6 A laser pulse with strength parameter a0

21
propagates in an underdense plasma, expelling electrons
from the region of the axis, creating an ion cavity and a
highly nonlinear wake. The phase velocity of the wake is

assumed to be equal to the laser group velocity in the plasma
vg. We assume the cavity to be a sphere6 of radius rb

=2�a0 /kp= ��a0 /���p, with the electromagnetic fields �axial
Ez and radial Er electric fields and an azimuthal B	 magnetic
field� of the wake within the blow-out region given by
Ez /E0=kp� /2, Er /E0=kpr /4, and B	 /E0=−kpr /4, where �
=z+rb−vgt such that �=0 and r=0 corresponds to the center
of the blow-out sphere �cavity�, �=rb corresponds to the
front of the cavity, and �=−rb corresponds to the back of the
cavity. The equation of motion for a test electron that is
being accelerated inside the cavity is

dp

dt
= F	 + F� = −

m�p
2

2
�ẑ −

m�p
2

2
�xx̂ + yŷ� �9�

assuming −rb� �� ,x ,y��rb �the test electron resides within
the cavity�, where p is the momentum and �x ,y ,z� are the
coordinates of the test electron. The electron is initially in-
jected at the back of the cavity zi=−2rb, with a transverse
positions xi and yi, and a velocity vi. Without lack of gener-
ality we assume vyi

=0 and yi=0, which restricts the test
electron orbit to the �x ,z� plane. The first term, F	, is respon-
sible for the electron acceleration in the longitudinal direc-
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FIG. 1. �Color online� Schematic of the density variations considered. The
density varies along the direction of the laser. The initial density is n0. In the
case of a density depression n1�n0, whereas n1�n0 in the case of the step.
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tion ẑ. As the electron becomes relativistic, its velocity be-
comes greater than vg; the term −�= �vgt−z−rb� decreases
and the accelerating force is reduced. The length for the elec-
tron to reach the middle ��=0� of the cavity and become
decelerated �vgt−z�rb� corresponds to the dephasing length

Ld. The second term, F� �, is the focusing force that creates
transverse oscillating across the cavity axis at the betatron
frequency ��=ck���p /�2�, assuming �z��. Initially de-
fined by the initial conditions at the injection into the cavity,
the betatron amplitude decreases r���−1/4 via electron accel-
eration.

Since the forces in the cavity are directly dependent on
the plasma density, an appropriate variation of the density
can be used to modify the relativistic electron orbit in such a
way that the betatron radiation is shifted to high photon en-
ergies. Here, the methods proposed are based on a density
tailoring along the laser axis ẑ. Axial variations in the density
can be formed either mechanically by guiding/blocking the
gas flow from a gas jet �n1=0�, or by laser machining �0
�n1�n0 or oppositely n1�n0�.27,28 We will consider two
specific cases �see Fig. 1�: a finite density depression and a
density step.

For the first case �a density depression inserted between
two regions of uniform density�, betatron radiation can be
enhanced as follows. In a density depression, the longitudi-
nal and transverse forces are reduced �or eliminated in the
case of zero density�. An electron entering this depression
will ballistically drift at constant energy and at a constant
angle. If the length of the depression is sufficiently long, the
transverse displacement of the electron entering the second
region of uniform density can be greater than that in the first
uniform region. Hence, the electron can enter the second
uniform region with a larger betatron amplitude r� then be-
fore the depression. Since r� has increased, so will the criti-
cal frequency of the emitted betatron radiation, �c�r�. In
addition, a larger betatron amplitude r� increases the trans-
verse path the electron covers, which in effect decreases the
axial electron velocity, i.e., vz�vz0�1− �k�

2r�
2 /2�cos2 �bt�.13

This results in a longer dephasing length �the time for the
electron to reach the middle of the cavity is longer�, which
increases the axial electron energy and consequently the
critical frequency �c��7/4. The dephasing length Ldp can be
estimated by Ldp�vz−vg� /c�rb, where vg is the group veloc-
ity of the laser pulse, i.e., vg /c�1−�p

2 /2�2 in the linear
one-dimensional limit. This gives

Ldp � �2�2/�p
2�rb�1 − k2r�

2 /4��−1 �10�

assuming a constant energy electron, where Ldp0

= �2�2 /�p
2�rb is the dephasing length in the absence of a

betatron oscillation. Note that nonlinear estimates29 for the
phase velocity of the cavitated wake give vp /c�1
−3�p

2 /2�2, which changes the numerical coefficient in Eq.
�10� from 2 to 2 /3. Hence, increasing the betatron orbit from
an amplitude of r�1 to an amplitude r�2 will increase the
dephasing length by an amount �Ldp, where

�Ldp/Ldp0 � �k2/4���r�2
2 − r�1

2 � , �11�

assuming k2r�
2 /4��1. A substantial increase in the dephas-

ing length can result when � is near k2r�
2 /4, however, � is

not constant �e.g., increasing� due to the wakefield. For high
electron energies, �k2rb

2 /4, the increase in the dephasing
length will be a small effect.

An alternative method for increasing the dephasing
length and the electron energy is to introduce a region of
higher density. For simplicity, consider an axial plasma den-
sity profile that is a step function in which the density in-
creases from a value n0 to a value n1. As the electron is
accelerated through the first �lower density� region, it outruns
the wake and approaches the center of the blow-out cavity at
which point the accelerating field is zero. The distance re-
quired to reach the center of the cavity defines the dephasing
length. If the density is increased just prior to the electron
reaching the center of the cavity, the cavity radius �propor-
tional to the plasma wavelength� decreases, and the center of
the cavity is suddenly shifted forward closer to the drive
laser pulse. Hence, increasing the density can increase the
dephasing length and the electron energy gain.24,25 The in-
crease in the dephasing length is �Ldp��2�2 /�p1

2 ��rb0

−rb1�, where the subscripts 0 and 1 refer to the values in the
density regions n0 and n1, respectively. Since �p�n1/2 and
rb�n−1/2,

�Ldp/Ldp0 = �n0/n1��1 − �n0/n1�1/2� , �12�

which is independent of the electron energy �assuming �
�� /�p�, neglects the effects of the betatron orbit, and as-
sumes that the laser intensity a0 is constant. Since the wake-
field scales with density as Ez�n1/2, the final electron energy
at dephasing scales as ��dp /�dp0= �n0 /n1�1/2�1− �n0 /n1�1/2�.
Furthermore, the betatron period ���n−1/2 is reduced in the
higher density region, which increases the number of beta-
tron oscillations and hence the flux of the emitted radiation.

Figure 2 shows the electron orbits obtained by numeri-
cally integrating Eq. �9� for four cases: �a� A uniform density
case with n1=n0, �b� a plasma with a narrow density depres-
sion of n1=n0 /10, �c� a plasma with a wider density depres-
sion of n1=0, and �d� a plasma with a density step with n1

=1.5n0. In these two-dimensional simulations, the betatron
orbit is in the x-z plane with an initial amplitude xi=1 �m,
initial momenta pxi

=0, and pzi
/mc=10, with n0=1.5

�1019 cm−3. In the numerical simulation we consider the
density gradient �L=50 �m while we neglect it for the ana-
lytical expression ��L=0�.

Simple expressions for the location of the density de-
pression z1 and the length of the depression L=z2−z1 that
maximize the electron betatron amplitude and energy can be
estimated as follows. If we assume that F	 is negligible in the
depression from z1 to z2 �0�n1�n0� and that the electron
has a constant energy ��z1�, then the equation of motion
reduces to an harmonic oscillator and the transverse motion
is given by

x�t� = x1 cos���1
t + �� , �13�
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vx�t� = − x1��1
sin���1

t + �� , �14�

where x1= �x2+vx
2 /��1

2 �1/2 is a constant of motion corre-
sponding to the amplitude of the betatron oscillation,30 ��1
=���n1 ,��z1� ,x1� is the betatron frequency in the region of
density n1, and � is a constant phase term. In the region
�z1 :z2�, the amplitude 
x1
 of the betatron motion depends on
the electron energy and position at z1. It oscillates at 2��1

in
the range

x1 = �x0�n0/n1�1/2, for x�z1� = 0,

x0, for x�z1� = x0,
� �15�

where x0 is the betatron amplitude before z1 and where we
have used the relation vx�z1� /��1

=x0�n0 /n1�1/2. In order to
maximize x1, the position z1 must be chosen to have x�z1�
=0 and the length L must match one quarter of a betatron
period ���1

/4�, which gives

L =
�p�n1�

4
�2��z1� . �16�

In Fig. 2�b�, the density depression starts at z1=180 �m. At
that position the electron has an energy �=170 and x0=0.6
�m. In agreement with the simulation, the above expressions
give x1=1.7 �m and L=120 �m.

For the case n1=0, the electron is in a force free region
for z� �z1 :z2�. The electron motion is ballistic and the trans-
verse amplitude is given by

x1 =
vx�z1�
vz�z1�

L �
a�0

��z1�
L , �17�

where a�0=a��n0 ,��z1� ,x0�. The transverse orbit x1 is lim-
ited by the size of the cavity. If x1 exceeds the transverse
dimension of the cavity it is not trapped at z2. This gives the
condition

L �
vz�z1�
vx�z1�

rb�z1� �
��z1�
a�0

rb�z1� , �18�

where rb�z1� is the radius of the ion cavity at the position z1.
In the example of Fig. 2�c�, the density depression is placed
at z1=180 �m. At that position the electron has an energy
�=170. Here, we have chosen the thickness of the depressed
density slice to be L=150 �m, which gives x1=3 �m.

In the case of the density step, the transverse orbit am-
plitude, within the harmonic oscillator approximation, is
given by Eq. �13�. In the longitudinal direction, the radius of
the cavity is reduced to rb�n1� and the condition for the elec-
tron to remain trapped in the cavity at the density transition
is then

z1 � vgt − 2rb�n1� . �19�

In addition to the modification of the electron orbit am-
plitude, a consequence of the density variation is an energy
gain with respect to the reference case of uniform density
�n1=n0�. Figure 3 shows the electron energy as a function of
time for the three cases that correspond to those in Figs.
2�b�–2�d�. The insert of Fig. 3 shows the normalized accel-
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eration force F	. For the reference case, F	 linearly decreases
as a function of time and the electron outruns the wake after
�1 mm. Its maximum energy is �0=360. In the case of the
density depression, the increase of the electron energy occurs
from a modification of the dephasing length. Because of the
longer path the electron has to cover, dF	 /dt is lowered and
the time for the electron to reach the dephasing phase of the
plasma wave is increased. This clearly appears on the inset
of Fig. 3. As a result, the maximum electron energy is in-
creased. For the example in Fig. 3, the maximum electron
energy becomes �1=490 in the case n1=0 and �1=400 for
n1=n0 /10. For the density step, the principle is different
since betatron amplitude is not increased. Here, the reduction
of the cavity size causes the electron to slip back to the
accelerating phase of the wake. The accelerating force is
suddenly increased at the step and exceeds E0 owing to the
higher density. For the example in Fig. 3, the maximum elec-
tron energy reaches �1=460 and then decreases from dephas-
ing.

IV. BETATRON RADIATION IN A DENSITY
TAILORED WAKEFIELD

A. Radiation from a single electron

As described in Sec. II, many of the important features
of betatron radiation are characterized by the betatron
strength parameter a�� ��n�1/2r� and the critical frequency
�c��2nr�. As discussed in Sec. III, the amplitude of the
electron motion in the ion cavity is of the order of 1 �m.
This results in maximum a� parameters typically on the or-
der a��10. The modification of the electron trajectories de-
scribed above, through tailoring of the density profile, allows
both a� and �c to increase so as to efficiently produce beta-
tron radiation at higher frequencies.

With the knowledge of the trajectory parameters it is
then straightforward to obtain the betatron x-ray beam fea-
tures. In the presence of the density variation, the critical
x-ray energy is upshifted owing to the increase of either r�,
�, or n. The maximum increase of the critical frequency is
given by the ratio

R�c
=

�c1

�c0
� ��1/�0�2�n0/n1�1/2, for 0 � n1 � n0,

��1/�0�2�x1/x0� , for n1 = 0,

��1/�0�2�n1/n0� , for n1 � n0,
� �20�

where �c1 and �c0 are, respectively, the maxima of the criti-
cal frequency along the propagation with and without a den-
sity variation, and �0 and �1 are, respectively, the maximum
electron energy with and without a density variation. Also
note that for the n1=0 case, ��1 /�0�2x1L /x0

���1
2 /�0

3�La�0 /x0. Figure 4 shows the spectral intensity, in-
tegrated over the vertical angle �Eq. �7��, for n1=n0, n1

=n0 /10, n1=0, and n1=1.5n0. In the case n1=0, the spectrum
extends above 100 keV. Using the results of Figs. 2 and 3,
which give x0=0.6 �m, x1=3 �m, �0=360, and �1=490, we
obtain R�c

�9. In the case n1=n0 /10, we have �0=360, �1

=400 �Fig. 3�, which give R�c
�3.8. Finally, for the case

n1=1.5n0, the maximum energy reached by the electron is

�1=460 and R�c
�2.4. The analytical results are in good

agreement with the numerical results.
The gain of energy and flux provided by the modification

of r� and � is lowered by losses in the case of the density
depression. Indeed, for n1=0 the electron is not accelerated
and does not emit radiation over L. This is also the case for
n1=n0 /10, but with L shorter �for n1=n /10 the acceleration
and radiation emitted are negligible�. On the other hand, in
the case of the density step there are no losses and, owing to
the reduction of the betatron period for z�z1, the electron
undergoes more betatron oscillations and the flux is further
increased.

The position z1 of the density variation strongly affects
the radiated energy because it determines the betatron ampli-
tude x1 and the energy of the electron. Figure 5 shows the
radiated energy dI�z1� /d	h=�d��d2I /d�d	h� �integrated
over vertical angle and frequencies� as a function z1 for the
three cases. Here, dI�z1� /d	h is normalized by the maximum
radiated energy obtained in the case n1=0. On each graph,
we also show dI�z1� /d	h for the reference case n1=n0. In the
case of the density depression, the radiated energy oscillates
with x1 at 2��1. As seen before, the variation must be placed
at z1 satisfying x�z1�=0. Oppositely, for x�z1�=x0, the ampli-
tude of motion is not increased and the radiated energy is
lower than the reference case because of losses. For the den-
sity step, the dependence is opposite. The amplitude is maxi-
mum when x�z1�=x0 and oscillates in the range �x0 /�1.5:x0�.
Therefore, the radiated energy oscillates at 2��1, but since
there are no losses, the flux always remains above the refer-
ence flux. For all cases, the radiated energy globally de-
creases with z1 because the fraction of the propagation length
over which the electron benefits from a larger r� and � is
shortened. The length L of the density modulation also af-
fects the radiated energy. Figure 6 shows the radiated energy
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dI�L� /d	h=�d��d2I /d�d	h� �integrated over vertical angle
and frequencies� as a function L for the case of the density
n0 /10. We see that the radiated energy is maximum when
L=��1

/4 and oscillates at twice betatron frequency for the
density n1. In the case n1=0, the length L is determined by
the condition �18�.

The angular distribution of the betatron radiation in the
horizontal plane �the plane containing the betatron orbit� de-
pends on the betatron amplitude, is characterized by the
angle 	h�a� /�, and is hence affected by the density varia-
tion. The consequence of the larger betatron amplitude is an

increase in the x-ray beam divergence in the plane of the
electron motion. The increase of divergence compared to the
reference case is given by the ratio

R	h
= ���0/�1�1/2�x1/x0� for the depletion case,

��0/�1�1/2�n1/n0�1/2 for the step case.
� �21�

For n1=0, n1=n0 /10, and n1=1.5n0, we obtain R	=4.3, R	

=2.7, and R	=1.1. Figure 7 represents the angular profile of
radiation produced by the electron trajectories of Fig. 2. The
intensity represents the total radiated energy dI /d�
=�d�d2I /d�d� per unit solid angle d�. Even considering
the increase of the divergence, the radiated energy at the
angle of maximum emission is enhanced.

B. Radiation from an electron bunch

In the case of an electron beam composed of many elec-
trons with different energies, transverse and longitudinal po-
sitions, and divergences, there are no phase relations between
the electrons. Therefore, according to Fig. 5, a fraction of the
electrons will benefit from the effect of the density variation
to produce more betatron radiation, whereas others will not,
depending on the phase of the betatron oscillation of a given
electron as it enters the depression. Here we consider �500
electrons initially distributed within a cylindrical spatial re-
gion with initial radii ri�2 �m and with initial transverse
momenta −1� pxi /mc�1. In the longitudinal direction we
continuously inject the electrons into the cavity along the
propagation during 50 �m. These conditions result in a mix
of the phases and amplitude of the betatron oscillations. The
trajectories of all the electrons are shown in Fig. 8 for the
same parameters as Fig. 2.

The phase mixing initially introduced prevents coherent
betatron oscillations of the electrons, as shown on Fig. 8�a�,
which plots the electron trajectories for the case of no density
variation. In addition, the spread in the initial longitudinal
position results in a broad electron distribution. The trajecto-
ries for the n1=n0 /10, n1=0, and n1=1.5n0 cases are shown
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in Figs. 8�b�–8�d�, respectively. It is clear that the electrons
have a range of betatron amplitudes x1 as they enter the
density transition.

The corresponding spectra of the radiation emitted by
the electron bunches are shown in Fig. 9. They have been
normalized so they can be compared to Fig. 4, which is
equivalent to the case of a fully coherent oscillation of all the
electrons. The difference observed between Figs. 4 and 8 can
be explained using the results of Fig. 5. In the cases of the
density depression, the radiated energy from a single electron
varies rapidly with z1 �which determines the phase of the
betatron oscillation as it enters the density transition� and
because of the large phase variation of the electrons in the
bunch at z1, it is lowered compared to Fig. 4. In the case of
the density step, the radiated energy only slightly varies with
z1 and it remains very similar to Fig. 4. The x-ray spectra that
can be obtained will depend on the specific electron bunch
parameters.

V. DISCUSSION

Methods have been investigated for enhancing both the
flux and photon energy of betatron radiation by modifying
the longitudinal plasma density profile while holding the la-
ser parameters constant. Two specific types of density pro-
files were examined. The first is to introduce a region of

depressed density in an otherwise initially uniform plasma.
The second is a step function profile, wherein the density is
increased in the latter portion of the plasma. The density
depression, if positioned properly in the plasma, increases
the betatron amplitude of a significant fraction of the accel-
erated electrons. The increased betatron amplitude also im-
plies a decreased axial velocity and hence an increased
dephasing length and an increased energy gain. Thus a de-
pression can increase both r� and �, and hence �c. A step
profile with increased density decreases the plasma wave-
length, thereby increases the dephasing length and the energy
gain. Thus a density step can increase both n and �, and
hence �c.

Numerical studies were carried out to determine the mo-
tion of test particles in analytically specified fields for cavi-
tated wakes including the effects of density tailoring. The
cases of a single electron and of an electron beam were in-
vestigated. The type of density variation depends on the en-
ergy range desired and can be either a density dip or step.
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Several potentially significant effects were not modelled. In
particular, laser evolution was not included in this study. For
example, the propagation of the laser through the density
depression has not been treated. If the plasma density is too
low, guiding of the laser pulse may not occur �through rela-
tivistic self-focusing and/or channel guiding�. In that case,
the laser diffracts and if the laser intensity is too low at z2,
the cavitated wake does not immediately reform and loss of
accelerated electrons becomes significant. It is therefore nec-
essary to have L smaller than the Rayleigh length. Similarly,
laser pulse depletion has not been modelled. In the highly
nonlinear regime, the pump depletion length may not signifi-
cantly exceed the dephasing length, which will limit the ap-
plicability of density tailoring to enhance the energy gain
beyond the dephasing limit in a uniform plasma. Inclusion of
these effects requires self-consistent simulation of laser
propagation, wakefield generation, and electron acceleration.

In this article, we have only discussed the two simple
configurations of density tailoring: The use of a single de-
pression or the use of a single density step. Other configura-
tions may be more efficient for enhancing the betatron emis-
sion, such as the use of multiple depressions or the use of a
density profile which is continuously increasing. For ex-
ample, consider the use of two depressions. First, in the case
n1=0, the use of two depressions can mitigate limitations
due to the laser diffraction and electron loss. The sum of the
lengths of two dips is less than that of a single region alone,
since vx is higher after the first region. Second, for n1

=n0 /10, the transverse oscillation amplitude can be increased
in successive variations up the maximum value of r�. This
can significantly increase the x-ray flux and energy. The case
of a rising density ramp has also been studied. In that case
the radius of the cavity is continuously reduced as the elec-
tron dephases. In that more complicated case, out of the

scope of this paper, the simulations show that the peak inten-
sity is increased by �30% and R�c

�3.5.
Density tailoring, through a variety of possible configu-

rations, can be used to control the electron orbits and pro-
duced more efficient betatron radiation. For fixed drive laser
parameters, it is found that the betatron radiation spectra can
be shifted from the keV range to the tens keV range. In the
tens keV energy range, the betatron source could become a
pioneering and promising tool for the applications requiring
ultrashort pulse and micrometer source size x-ray
radiation.31,32
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